Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Prompt Tuning for Parameter-efficient Medical Image Segmentation (2211.09233v1)

Published 16 Nov 2022 in cs.CV

Abstract: Neural networks pre-trained on a self-supervision scheme have become the standard when operating in data rich environments with scarce annotations. As such, fine-tuning a model to a downstream task in a parameter-efficient but effective way, e.g. for a new set of classes in the case of semantic segmentation, is of increasing importance. In this work, we propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets. Relying on the recently popularized prompt tuning approach, we provide a prompt-able UNet (PUNet) architecture, that is frozen after pre-training, but adaptable throughout the network by class-dependent learnable prompt tokens. We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes (contrastive prototype assignment, CPA) of a student teacher combination alongside a concurrent segmentation loss on a subset of classes. We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models on CT imaging datasets. As such, the difference between fully fine-tuned and prompt-tuned variants amounts to only 3.83 pp for the TCIA/BTCV dataset and 2.67 pp for the CT-ORG dataset in the mean Dice Similarity Coefficient (DSC, in %) while only prompt tokens, corresponding to 0.85% of the pre-trained backbone model with 6.8M frozen parameters, are adjusted. The code for this work is available on https://github.com/marcdcfischer/PUNet .

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub