Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing geometric representation hypotheses from simulated place cell recordings (2211.09096v1)

Published 16 Nov 2022 in q-bio.NC, cs.AI, cs.LG, and q-bio.QM

Abstract: Hippocampal place cells can encode spatial locations of an animal in physical or task-relevant spaces. We simulated place cell populations that encoded either Euclidean- or graph-based positions of a rat navigating to goal nodes in a maze with a graph topology, and used manifold learning methods such as UMAP and Autoencoders (AE) to analyze these neural population activities. The structure of the latent spaces learned by the AE reflects their true geometric structure, while PCA fails to do so and UMAP is less robust to noise. Our results support future applications of AE architectures to decipher the geometry of spatial encoding in the brain.

Summary

We haven't generated a summary for this paper yet.