Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A moving horizon state and parameter estimation scheme with guaranteed robust convergence (2211.09053v2)

Published 16 Nov 2022 in eess.SY and cs.SY

Abstract: We propose a moving horizon estimation scheme for joint state and parameter estimation for nonlinear uncertain discrete-time systems. We establish robust exponential convergence of the combined estimation error subject to process disturbances and measurement noise. We employ a joint incremental input/output-to-state stability ($\delta$-IOSS) Lyapunov function to characterize nonlinear detectability for the states and (constant) parameters of the system. Sufficient conditions for the construction of a joint $\delta$-IOSS Lyapunov function are provided for a special class of nonlinear systems using a persistence of excitation condition. The theoretical results are illustrated by a numerical example.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.