Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LLEDA -- Lifelong Self-Supervised Domain Adaptation (2211.09027v3)

Published 12 Nov 2022 in cs.LG and cs.CV

Abstract: Humans and animals have the ability to continuously learn new information over their lifetime without losing previously acquired knowledge. However, artificial neural networks struggle with this due to new information conflicting with old knowledge, resulting in catastrophic forgetting. The complementary learning systems (CLS) theory suggests that the interplay between hippocampus and neocortex systems enables long-term and efficient learning in the mammalian brain, with memory replay facilitating the interaction between these two systems to reduce forgetting. The proposed Lifelong Self-Supervised Domain Adaptation (LLEDA) framework draws inspiration from the CLS theory and mimics the interaction between two networks: a DA network inspired by the hippocampus that quickly adjusts to changes in data distribution and an SSL network inspired by the neocortex that gradually learns domain-agnostic general representations. LLEDA's latent replay technique facilitates communication between these two networks by reactivating and replaying the past memory latent representations to stabilise long-term generalisation and retention without interfering with the previously learned information. Extensive experiments demonstrate that the proposed method outperforms several other methods resulting in a long-term adaptation while being less prone to catastrophic forgetting when transferred to new domains.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.