Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Region Embedding with Intra and Inter-View Contrastive Learning (2211.08975v1)

Published 15 Nov 2022 in cs.CV and cs.LG

Abstract: Unsupervised region representation learning aims to extract dense and effective features from unlabeled urban data. While some efforts have been made for solving this problem based on multiple views, existing methods are still insufficient in extracting representations in a view and/or incorporating representations from different views. Motivated by the success of contrastive learning for representation learning, we propose to leverage it for multi-view region representation learning and design a model called ReMVC (Region Embedding with Multi-View Contrastive Learning) by following two guidelines: i) comparing a region with others within each view for effective representation extraction and ii) comparing a region with itself across different views for cross-view information sharing. We design the intra-view contrastive learning module which helps to learn distinguished region embeddings and the inter-view contrastive learning module which serves as a soft co-regularizer to constrain the embedding parameters and transfer knowledge across multi-views. We exploit the learned region embeddings in two downstream tasks named land usage clustering and region popularity prediction. Extensive experiments demonstrate that our model achieves impressive improvements compared with seven state-of-the-art baseline methods, and the margins are over 30% in the land usage clustering task.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.