Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 30 tok/s
Gemini 3.0 Pro 42 tok/s
Gemini 2.5 Flash 130 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Revisiting Training-free NAS Metrics: An Efficient Training-based Method (2211.08666v1)

Published 16 Nov 2022 in cs.CV

Abstract: Recent neural architecture search (NAS) works proposed training-free metrics to rank networks which largely reduced the search cost in NAS. In this paper, we revisit these training-free metrics and find that: (1) the number of parameters (#Param), which is the most straightforward training-free metric, is overlooked in previous works but is surprisingly effective, (2) recent training-free metrics largely rely on the #Param information to rank networks. Our experiments show that the performance of recent training-free metrics drops dramatically when the #Param information is not available. Motivated by these observations, we argue that metrics less correlated with the #Param are desired to provide additional information for NAS. We propose a light-weight training-based metric which has a weak correlation with the #Param while achieving better performance than training-free metrics at a lower search cost. Specifically, on DARTS search space, our method completes searching directly on ImageNet in only 2.6 GPU hours and achieves a top-1/top-5 error rate of 24.1\%/7.1\%, which is competitive among state-of-the-art NAS methods. Codes are available at \url{https://github.com/taoyang1122/Revisit_TrainingFree_NAS}

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.