Papers
Topics
Authors
Recent
2000 character limit reached

A Hierarchical Deep Neural Network for Detecting Lines of Codes with Vulnerabilities (2211.08517v1)

Published 15 Nov 2022 in cs.CR, cs.AI, cs.LG, cs.PL, and cs.SE

Abstract: Software vulnerabilities, caused by unintentional flaws in source codes, are the main root cause of cyberattacks. Source code static analysis has been used extensively to detect the unintentional defects, i.e. vulnerabilities, introduced into the source codes by software developers. In this paper, we propose a deep learning approach to detect vulnerabilities from their LLVM IR representations based on the techniques that have been used in natural language processing. The proposed approach uses a hierarchical process to first identify source codes with vulnerabilities, and then it identifies the lines of codes that contribute to the vulnerability within the detected source codes. This proposed two-step approach reduces the false alarm of detecting vulnerable lines. Our extensive experiment on real-world and synthetic codes collected in NVD and SARD shows high accuracy (about 98\%) in detecting source code vulnerabilities.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.