Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Acyclic colourings of graphs with obstructions (2211.08417v1)

Published 15 Nov 2022 in math.CO and cs.DM

Abstract: Given a graph $G$, a colouring of $G$ is acyclic if it is a proper colouring of $G$ and every cycle contains at least three colours. Its acyclic chromatic number $\chi_a(G)$ is the minimum $k$ such that there exists a proper $k$-colouring of $G$ with no bicoloured cycle. In general, when $G$ has maximum degree $\Delta$, it is known that $\chi_a(G) = O(\Delta{4/3})$ as $\Delta \to \infty$. We study the effect on this bound of further requiring that $G$ does not contain some fixed subgraph $F$ on $t$ vertices. We establish that the bound is constant if $F$ is a subdivided tree, $O(t{8/3}\Delta{2/3})$ if $F$ is a forest, $O(\sqrt{t}\Delta)$ if $F$ is bipartite and 1-acyclic, $2\Delta + o(\Delta)$ if $F$ is an even cycle of length at least $6$, and $O(t{1/4}\Delta{5/4})$ if $F=K_{3,t}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.