Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Hierarchical Phrase-based Sequence-to-Sequence Learning (2211.07906v2)

Published 15 Nov 2022 in cs.CL

Abstract: We describe a neural transducer that maintains the flexibility of standard sequence-to-sequence (seq2seq) models while incorporating hierarchical phrases as a source of inductive bias during training and as explicit constraints during inference. Our approach trains two models: a discriminative parser based on a bracketing transduction grammar whose derivation tree hierarchically aligns source and target phrases, and a neural seq2seq model that learns to translate the aligned phrases one-by-one. We use the same seq2seq model to translate at all phrase scales, which results in two inference modes: one mode in which the parser is discarded and only the seq2seq component is used at the sequence-level, and another in which the parser is combined with the seq2seq model. Decoding in the latter mode is done with the cube-pruned CKY algorithm, which is more involved but can make use of new translation rules during inference. We formalize our model as a source-conditioned synchronous grammar and develop an efficient variational inference algorithm for training. When applied on top of both randomly initialized and pretrained seq2seq models, we find that both inference modes performs well compared to baselines on small scale machine translation benchmarks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.