Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Survey for Efficient Open Domain Question Answering (2211.07886v1)

Published 15 Nov 2022 in cs.CL

Abstract: Open domain question answering (ODQA) is a longstanding task aimed at answering factual questions from a large knowledge corpus without any explicit evidence in NLP. Recent works have predominantly focused on improving the answering accuracy and achieved promising progress. However, higher accuracy often comes with more memory consumption and inference latency, which might not necessarily be efficient enough for direct deployment in the real world. Thus, a trade-off between accuracy, memory consumption and processing speed is pursued. In this paper, we provide a survey of recent advances in the efficiency of ODQA models. We walk through the ODQA models and conclude the core techniques on efficiency. Quantitative analysis on memory cost, processing speed, accuracy and overall comparison are given. We hope that this work would keep interested scholars informed of the advances and open challenges in ODQA efficiency research, and thus contribute to the further development of ODQA efficiency.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.