Papers
Topics
Authors
Recent
2000 character limit reached

Category-Adaptive Label Discovery and Noise Rejection for Multi-label Image Recognition with Partial Positive Labels (2211.07846v1)

Published 15 Nov 2022 in cs.CV

Abstract: As a promising solution of reducing annotation cost, training multi-label models with partial positive labels (MLR-PPL), in which merely few positive labels are known while other are missing, attracts increasing attention. Due to the absence of any negative labels, previous works regard unknown labels as negative and adopt traditional MLR algorithms. To reject noisy labels, recent works regard large loss samples as noise but ignore the semantic correlation different multi-label images. In this work, we propose to explore semantic correlation among different images to facilitate the MLR-PPL task. Specifically, we design a unified framework, Category-Adaptive Label Discovery and Noise Rejection, that discovers unknown labels and rejects noisy labels for each category in an adaptive manner. The framework consists of two complementary modules: (1) Category-Adaptive Label Discovery module first measures the semantic similarity between positive samples and then complement unknown labels with high similarities; (2) Category-Adaptive Noise Rejection module first computes the sample weights based on semantic similarities from different samples and then discards noisy labels with low weights. Besides, we propose a novel category-adaptive threshold updating that adaptively adjusts the threshold, to avoid the time-consuming manual tuning process. Extensive experiments demonstrate that our proposed method consistently outperforms current leading algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.