SlabLU: A Two-Level Sparse Direct Solver for Elliptic PDEs (2211.07572v2)
Abstract: The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two dimensional domain. The solver is designed to reduce communication costs and perform well on GPUs; it uses a two-level framework, which is easier to implement and optimize than traditional multi-frontal schemes based on hierarchical nested dissection orderings. The scheme decomposes the domain into thin subdomains, or "slabs". Within each slab, a local factorization is executed that exploits the geometry of the local domain. A global factorization is then obtained through the LU factorization of a block-tridiagonal reduced coefficient matrix. The solver has complexity $O(N{5/3})$ for the factorization step, and $O(N{7/6})$ for each solve once the factorization is completed. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order convergent multi-domain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size $1000 \lambda \times 1000 \lambda$ (for which $N=100 \mbox{M}$) is solved in 15 minutes to 6 correct digits on a high-powered desktop with GPU acceleration.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.