Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Wikigender: A Machine Learning Model to Detect Gender Bias in Wikipedia (2211.07520v1)

Published 14 Nov 2022 in cs.CY

Abstract: The way Wikipedia's contributors think can influence how they describe individuals resulting in a bias based on gender. We use a machine learning model to prove that there is a difference in how women and men are portrayed on Wikipedia. Additionally, we use the results of the model to obtain which words create bias in the overview of the biographies of the English Wikipedia. Using only adjectives as input to the model, we show that the adjectives used to portray women have a higher subjectivity than the ones used to describe men. Extracting topics from the overview using nouns and adjectives as input to the model, we obtain that women are related to family while men are related to business and sports.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.