Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Zero-shot Image Captioning by Anchor-augmented Vision-Language Space Alignment (2211.07275v1)

Published 14 Nov 2022 in cs.CV

Abstract: CLIP (Contrastive Language-Image Pre-Training) has shown remarkable zero-shot transfer capabilities in cross-modal correlation tasks such as visual classification and image retrieval. However, its performance in cross-modal generation tasks like zero-shot image captioning remains unsatisfied. In this work, we discuss that directly employing CLIP for zero-shot image captioning relies more on the textual modality in context and largely ignores the visual information, which we call \emph{contextual language prior}. To address this, we propose Cross-modal LLMs (CLMs) to facilitate unsupervised cross-modal learning. We further propose Anchor Augment to guide the generative model's attention to the fine-grained information in the representation of CLIP. Experiments on MS COCO and Flickr 30K validate the promising performance of proposed approach in both captioning quality and computational efficiency.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.