Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploiting Device and Audio Data to Tag Music with User-Aware Listening Contexts (2211.07250v1)

Published 14 Nov 2022 in cs.SD, cs.LG, and eess.AS

Abstract: As music has become more available especially on music streaming platforms, people have started to have distinct preferences to fit to their varying listening situations, also known as context. Hence, there has been a growing interest in considering the user's situation when recommending music to users. Previous works have proposed user-aware autotaggers to infer situation-related tags from music content and user's global listening preferences. However, in a practical music retrieval system, the autotagger could be only used by assuming that the context class is explicitly provided by the user. In this work, for designing a fully automatised music retrieval system, we propose to disambiguate the user's listening information from their stream data. Namely, we propose a system which can generate a situational playlist for a user at a certain time 1) by leveraging user-aware music autotaggers, and 2) by automatically inferring the user's situation from stream data (e.g. device, network) and user's general profile information (e.g. age). Experiments show that such a context-aware personalized music retrieval system is feasible, but the performance decreases in the case of new users, new tracks or when the number of context classes increases.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.