Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

FedCL: Federated Multi-Phase Curriculum Learning to Synchronously Correlate User Heterogeneity (2211.07248v2)

Published 14 Nov 2022 in cs.LG and cs.DC

Abstract: Federated Learning (FL) is a decentralized learning method used to train machine learning algorithms. In FL, a global model iteratively collects the parameters of local models without accessing their local data. However, a significant challenge in FL is handling the heterogeneity of local data distribution, which often results in a drifted global model that is difficult to converge. To address this issue, current methods employ different strategies such as knowledge distillation, weighted model aggregation, and multi-task learning. These approaches are referred to as asynchronous FL, as they align user models either locally or post-hoc, where model drift has already occurred or has been underestimated. In this paper, we propose an active and synchronous correlation approach to address the challenge of user heterogeneity in FL. Specifically, our approach aims to approximate FL as standard deep learning by actively and synchronously scheduling user learning pace in each round with a dynamic multi-phase curriculum. A global curriculum is formed by an auto-regressive auto-encoder that integrates all user curricula on the server. This global curriculum is then divided into multiple phases and broadcast to users to measure and align the domain-agnostic learning pace. Empirical studies demonstrate that our approach outperforms existing asynchronous approaches in terms of generalization performance, even in the presence of severe user heterogeneity.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.