Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Shared Loss between Generators of GANs (2211.07234v1)

Published 14 Nov 2022 in cs.LG and cs.AI

Abstract: Generative adversarial networks are generative models that are capable of replicating the implicit probability distribution of the input data with high accuracy. Traditionally, GANs consist of a Generator and a Discriminator which interact with each other to produce highly realistic artificial data. Traditional GANs fall prey to the mode collapse problem, which means that they are unable to generate the different variations of data present in the input dataset. Recently, multiple generators have been used to produce more realistic output by mitigating the mode collapse problem. We use this multiple generator framework. The novelty in this paper lies in making the generators compete against each other while interacting with the discriminator simultaneously. We show that this causes a dramatic reduction in the training time for GANs without affecting its performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.