Papers
Topics
Authors
Recent
2000 character limit reached

Shared Loss between Generators of GANs (2211.07234v1)

Published 14 Nov 2022 in cs.LG and cs.AI

Abstract: Generative adversarial networks are generative models that are capable of replicating the implicit probability distribution of the input data with high accuracy. Traditionally, GANs consist of a Generator and a Discriminator which interact with each other to produce highly realistic artificial data. Traditional GANs fall prey to the mode collapse problem, which means that they are unable to generate the different variations of data present in the input dataset. Recently, multiple generators have been used to produce more realistic output by mitigating the mode collapse problem. We use this multiple generator framework. The novelty in this paper lies in making the generators compete against each other while interacting with the discriminator simultaneously. We show that this causes a dramatic reduction in the training time for GANs without affecting its performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.