Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Information-guided pixel augmentation for pixel-wise contrastive learning (2211.07118v1)

Published 14 Nov 2022 in cs.CV

Abstract: Contrastive learning (CL) is a form of self-supervised learning and has been widely used for various tasks. Different from widely studied instance-level contrastive learning, pixel-wise contrastive learning mainly helps with pixel-wise tasks such as medical landmark detection. The counterpart to an instance in instance-level CL is a pixel, along with its neighboring context, in pixel-wise CL. Aiming to build better feature representation, there is a vast literature about designing instance augmentation strategies for instance-level CL; but there is little similar work on pixel augmentation for pixel-wise CL with a pixel granularity. In this paper, we attempt to bridge this gap. We first classify a pixel into three categories, namely low-, medium-, and high-informative, based on the information quantity the pixel contains. Inspired by the ``InfoMin" principle, we then design separate augmentation strategies for each category in terms of augmentation intensity and sampling ratio. Extensive experiments validate that our information-guided pixel augmentation strategy succeeds in encoding more discriminative representations and surpassing other competitive approaches in unsupervised local feature matching. Furthermore, our pretrained model improves the performance of both one-shot and fully supervised models. To the best of our knowledge, we are the first to propose a pixel augmentation method with a pixel granularity for enhancing unsupervised pixel-wise contrastive learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.