Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MetaKRec: Collaborative Meta-Knowledge Enhanced Recommender System (2211.07104v1)

Published 14 Nov 2022 in cs.IR

Abstract: Knowledge graph (KG) enhanced recommendation has demonstrated improved performance in the recommendation system (RecSys) and attracted considerable research interest. Recently the literature has adopted neural graph networks (GNNs) on the collaborative knowledge graph and built an end-to-end KG-enhanced RecSys. However, the majority of these approaches have three limitations: (1) treat the collaborative knowledge graph as a homogeneous graph and overlook the highly heterogeneous relationships among items, (2) lack of design to explicitly leverage the rich side information, and (3) overlook the rich knowledge in user preference. To fill this gap, in this paper, we explore the rich, heterogeneous relationship among items and propose a new KG-enhanced recommendation model called Collaborative Meta-Knowledge Enhanced Recommender System (MetaKRec). In particular, we focus on modeling the rich, heterogeneous semantic relationships among items and construct several collaborative Meta-KGs to explicitly depict the relatedness of the items under the guidance of meta-knowledge. In addition to the knowledge obtained from KG, we leverage user knowledge that extracts from user preference to construct the Meta-KGs. The constructed Meta-KGs can capture the knowledge from both the knowledge graph and user preference. Furthermore. we utilize a light convolution encoder to recursively integrate the item relationship in each collaborative Meta-KGs. This scheme allows us to explicitly gather the heterogeneous semantic relationships among items and encode them into the representations of items. In addition, we propose channel attention to fuse the item and user representations from different Meta-KGs. Extensive experiments are conducted on four real-world benchmark datasets, demonstrating significant gains over the state-of-the-art baselines on both regular and cold-start recommendation settings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube