Papers
Topics
Authors
Recent
2000 character limit reached

Orthogonal polynomials on a class of planar algebraic curves (2211.06999v1)

Published 13 Nov 2022 in math.NA and cs.NA

Abstract: We construct bivariate orthogonal polynomials (OPs) on algebraic curves of the form $ym = \phi(x)$ in $\mathbb{R}2$ where $m = 1, 2$ and $\phi$ is a polynomial of arbitrary degree $d$, in terms of univariate semiclassical OPs. We compute connection coeffeicients that relate the bivariate OPs to a polynomial basis that is itself orthogonal and whose span contains the OPs as a subspace. The connection matrix is shown to be banded and the connection coefficients and Jacobi matrices for OPs of degree $0, \ldots, N$ are computed via the Lanczos algorithm in $O(Nd4)$ operations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.