Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evaluating CNN with Oscillatory Activation Function

Published 13 Nov 2022 in cs.LG, cs.CV, and cs.NE | (2211.06878v1)

Abstract: The reason behind CNNs capability to learn high-dimensional complex features from the images is the non-linearity introduced by the activation function. Several advanced activation functions have been discovered to improve the training process of neural networks, as choosing an activation function is a crucial step in the modeling. Recent research has proposed using an oscillating activation function to solve classification problems inspired by the human brain cortex. This paper explores the performance of one of the CNN architecture ALexNet on MNIST and CIFAR10 datasets using oscillatory activation function (GCU) and some other commonly used activation functions like ReLu, PReLu, and Mish.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.