Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Evaluating CNN with Oscillatory Activation Function (2211.06878v1)

Published 13 Nov 2022 in cs.LG, cs.CV, and cs.NE

Abstract: The reason behind CNNs capability to learn high-dimensional complex features from the images is the non-linearity introduced by the activation function. Several advanced activation functions have been discovered to improve the training process of neural networks, as choosing an activation function is a crucial step in the modeling. Recent research has proposed using an oscillating activation function to solve classification problems inspired by the human brain cortex. This paper explores the performance of one of the CNN architecture ALexNet on MNIST and CIFAR10 datasets using oscillatory activation function (GCU) and some other commonly used activation functions like ReLu, PReLu, and Mish.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)