Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Drug-target affinity prediction method based on consistent expression of heterogeneous data (2211.06792v1)

Published 13 Nov 2022 in q-bio.BM and cs.LG

Abstract: The first step in drug discovery is finding drug molecule moieties with medicinal activity against specific targets. Therefore, it is crucial to investigate the interaction between drug-target proteins and small chemical molecules. However, traditional experimental methods for discovering potential small drug molecules are labor-intensive and time-consuming. There is currently a lot of interest in building computational models to screen small drug molecules using drug molecule-related databases. In this paper, we propose a method for predicting drug-target binding affinity using deep learning models. This method uses a modified GRU and GNN to extract features from the drug-target protein sequences and the drug molecule map, respectively, to obtain their feature vectors. The combined vectors are used as vector representations of drug-target molecule pairs and then fed into a fully connected network to predict drug-target binding affinity. This proposed model demonstrates its accuracy and effectiveness in predicting drug-target binding affinity on the DAVIS and KIBA datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)