Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Learning Neuro-symbolic Programs for Language Guided Robot Manipulation (2211.06652v2)

Published 12 Nov 2022 in cs.RO, cs.AI, and cs.LG

Abstract: Given a natural language instruction and an input scene, our goal is to train a model to output a manipulation program that can be executed by the robot. Prior approaches for this task possess one of the following limitations: (i) rely on hand-coded symbols for concepts limiting generalization beyond those seen during training 1 infer action sequences from instructions but require dense sub-goal supervision [2] or (iii) lack semantics required for deeper object-centric reasoning inherent in interpreting complex instructions [3]. In contrast, our approach can handle linguistic as well as perceptual variations, end-to-end trainable and requires no intermediate supervision. The proposed model uses symbolic reasoning constructs that operate on a latent neural object-centric representation, allowing for deeper reasoning over the input scene. Central to our approach is a modular structure consisting of a hierarchical instruction parser and an action simulator to learn disentangled action representations. Our experiments on a simulated environment with a 7-DOF manipulator, consisting of instructions with varying number of steps and scenes with different number of objects, demonstrate that our model is robust to such variations and significantly outperforms baselines, particularly in the generalization settings. The code, dataset and experiment videos are available at https://nsrmp.github.io

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com