Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Prediction of Geometric Transformation on Cardiac MRI via Convolutional Neural Network (2211.06641v1)

Published 12 Nov 2022 in eess.IV, cs.CV, and cs.LG

Abstract: In the field of medical image, deep convolutional neural networks(ConvNets) have achieved great success in the classification, segmentation, and registration tasks thanks to their unparalleled capacity to learn image features. However, these tasks often require large amounts of manually annotated data and are labor-intensive. Therefore, it is of significant importance for us to study unsupervised semantic feature learning tasks. In our work, we propose to learn features in medical images by training ConvNets to recognize the geometric transformation applied to images and present a simple self-supervised task that can easily predict the geometric transformation. We precisely define a set of geometric transformations in mathematical terms and generalize this model to 3D, taking into account the distinction between spatial and time dimensions. We evaluated our self-supervised method on CMR images of different modalities (bSSFP, T2, LGE) and achieved accuracies of 96.4%, 97.5%, and 96.4%, respectively. The code and models of our paper will be published on: https://github.com/gaoxin492/Geometric_Transformation_CMR

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube