Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction of Geometric Transformation on Cardiac MRI via Convolutional Neural Network (2211.06641v1)

Published 12 Nov 2022 in eess.IV, cs.CV, and cs.LG

Abstract: In the field of medical image, deep convolutional neural networks(ConvNets) have achieved great success in the classification, segmentation, and registration tasks thanks to their unparalleled capacity to learn image features. However, these tasks often require large amounts of manually annotated data and are labor-intensive. Therefore, it is of significant importance for us to study unsupervised semantic feature learning tasks. In our work, we propose to learn features in medical images by training ConvNets to recognize the geometric transformation applied to images and present a simple self-supervised task that can easily predict the geometric transformation. We precisely define a set of geometric transformations in mathematical terms and generalize this model to 3D, taking into account the distinction between spatial and time dimensions. We evaluated our self-supervised method on CMR images of different modalities (bSSFP, T2, LGE) and achieved accuracies of 96.4%, 97.5%, and 96.4%, respectively. The code and models of our paper will be published on: https://github.com/gaoxin492/Geometric_Transformation_CMR

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xin Gao (208 papers)

Summary

We haven't generated a summary for this paper yet.