Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

HumanDiffusion: a Coarse-to-Fine Alignment Diffusion Framework for Controllable Text-Driven Person Image Generation (2211.06235v1)

Published 11 Nov 2022 in cs.CV

Abstract: Text-driven person image generation is an emerging and challenging task in cross-modality image generation. Controllable person image generation promotes a wide range of applications such as digital human interaction and virtual try-on. However, previous methods mostly employ single-modality information as the prior condition (e.g. pose-guided person image generation), or utilize the preset words for text-driven human synthesis. Introducing a sentence composed of free words with an editable semantic pose map to describe person appearance is a more user-friendly way. In this paper, we propose HumanDiffusion, a coarse-to-fine alignment diffusion framework, for text-driven person image generation. Specifically, two collaborative modules are proposed, the Stylized Memory Retrieval (SMR) module for fine-grained feature distillation in data processing and the Multi-scale Cross-modality Alignment (MCA) module for coarse-to-fine feature alignment in diffusion. These two modules guarantee the alignment quality of the text and image, from image-level to feature-level, from low-resolution to high-resolution. As a result, HumanDiffusion realizes open-vocabulary person image generation with desired semantic poses. Extensive experiments conducted on DeepFashion demonstrate the superiority of our method compared with previous approaches. Moreover, better results could be obtained for complicated person images with various details and uncommon poses.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube