Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

The Simplest Balance Controller for Dynamic Walking (2211.06223v1)

Published 11 Nov 2022 in cs.RO, cs.SY, and eess.SY

Abstract: Humans can balance very well during walking, even when perturbed. But it seems difficult to achieve robust walking for bipedal robots. Here we describe the simplest balance controller that leads to robust walking for a linear inverted pendulum (LIP) model. The main idea is to use a linear function of the body velocity to determine the next foot placement, which we call linear foot placement control (LFPC). By using the Poincar\'e map, a balance criterion is derived, which shows that LFPC is stable when the velocity-feedback coefficient is located in a certain range. And that range is much bigger when stepping faster, which indicates "faster stepping, easier to balance". We show that various gaits can be generated by adjusting the controller parameters in LFPC. Particularly, a dead-beat controller is discovered that can lead to steady-state walking in just one step. The effectiveness of LFPC is verified through Matlab simulation as well as V-REP simulation for both 2D and 3D walking. The main feature of LFPC is its simplicity and inherent robustness, which may help us understand the essence of how to maintain balance in dynamic walking.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.