Papers
Topics
Authors
Recent
2000 character limit reached

Unimodal and Multimodal Representation Training for Relation Extraction (2211.06168v1)

Published 11 Nov 2022 in cs.CL

Abstract: Multimodal integration of text, layout and visual information has achieved SOTA results in visually rich document understanding (VrDU) tasks, including relation extraction (RE). However, despite its importance, evaluation of the relative predictive capacity of these modalities is less prevalent. Here, we demonstrate the value of shared representations for RE tasks by conducting experiments in which each data type is iteratively excluded during training. In addition, text and layout data are evaluated in isolation. While a bimodal text and layout approach performs best (F1=0.684), we show that text is the most important single predictor of entity relations. Additionally, layout geometry is highly predictive and may even be a feasible unimodal approach. Despite being less effective, we highlight circumstances where visual information can bolster performance. In total, our results demonstrate the efficacy of training joint representations for RE.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.