Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Faster Small Treewidth SDP Solver (2211.06033v1)

Published 11 Nov 2022 in math.OC and cs.DS

Abstract: Semidefinite programming is a fundamental tool in optimization and theoretical computer science. It has been extensively used as a black-box for solving many problems, such as embedding, complexity, learning, and discrepancy. One natural setting of semidefinite programming is the small treewidth setting. The best previous SDP solver under small treewidth setting is due to Zhang-Lavaei '18, which takes $n{1.5} \tau{6.5}$ time. In this work, we show how to solve a semidefinite programming with $n \times n$ variables, $m$ constraints and $\tau$ treewidth in $n \tau{2\omega+0.5}$ time, where $\omega < 2.373$ denotes the exponent of matrix multiplication. We give the first SDP solver that runs in time in linear in number of variables under this setting. In addition, we improve the running time that solves a linear programming with tau treewidth from $n \tau2$ (Dong-Lee-Ye '21) to $n \tau{(\omega+1)/2}$.

Citations (47)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube