Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GeoAI for Knowledge Graph Construction: Identifying Causality Between Cascading Events to Support Environmental Resilience Research (2211.06011v1)

Published 11 Nov 2022 in cs.AI

Abstract: Knowledge graph technology is considered a powerful and semantically enabled solution to link entities, allowing users to derive new knowledge by reasoning data according to various types of reasoning rules. However, in building such a knowledge graph, events modeling, such as that of disasters, is often limited to single, isolated events. The linkages among cascading events are often missing in existing knowledge graphs. This paper introduces our GeoAI (Geospatial Artificial Intelligence) solutions to identify causality among events, in particular, disaster events, based on a set of spatially and temporally-enabled semantic rules. Through a use case of causal disaster events modeling, we demonstrated how these defined rules, including theme-based identification of correlated events, spatiotemporal co-occurrence constraint, and text mining of event metadata, enable the automatic extraction of causal relationships between different events. Our solution enriches the event knowledge base and allows for the exploration of linked cascading events in large knowledge graphs, therefore empowering knowledge query and discovery.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)