Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse Kernel Decomposition (2211.05961v2)

Published 11 Nov 2022 in cs.LG and stat.ML

Abstract: The state-of-the-art dimensionality reduction approaches largely rely on complicated optimization procedures. On the other hand, closed-form approaches requiring merely eigen-decomposition do not have enough sophistication and nonlinearity. In this paper, we propose a novel nonlinear dimensionality reduction method -- Inverse Kernel Decomposition (IKD) -- based on an eigen-decomposition of the sample covariance matrix of data. The method is inspired by Gaussian process latent variable models (GPLVMs) and has comparable performance with GPLVMs. To deal with very noisy data with weak correlations, we propose two solutions -- blockwise and geodesic -- to make use of locally correlated data points and provide better and numerically more stable latent estimations. We use synthetic datasets and four real-world datasets to show that IKD is a better dimensionality reduction method than other eigen-decomposition-based methods, and achieves comparable performance against optimization-based methods with faster running speeds. Open-source IKD implementation in Python can be accessed at this \url{https://github.com/JerrySoybean/ikd}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Using dimensionality reduction and clustering techniques to classify space plasma regimes. Frontiers in Astronomy and Space Sciences, pp.  80, 2020.
  2. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 15(6):1373–1396, June 2003. ISSN 0899-7667. doi: 10.1162/089976603321780317. Conference Name: Neural Computation.
  3. Algorithm 457: finding all cliques of an undirected graph. Communications of the ACM, 16(9):575–577, September 1973. ISSN 0001-0782, 1557-7317. doi: 10.1145/362342.362367. URL https://dl.acm.org/doi/10.1145/362342.362367.
  4. Stochastic variational inference for Gaussian process latent variable models using back constraints. In Black Box Learning and Inference NIPS workshop, 2015.
  5. Achiya Dax et al. Low-rank positive approximants of symmetric matrices. Advances in Linear Algebra & Matrix Theory, 4(03):172, 2014.
  6. Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269–271, 1959.
  7. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.
  8. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Developmental cell, 18(4):675–685, 2010.
  9. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
  10. Mark A. Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 37(2):233–243, 1991. ISSN 1547-5905. doi: 10.1002/aic.690370209. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209.
  11. Multidimensional scaling. Number 11. Sage, 1978.
  12. Neil Lawrence. Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data. In Advances in Neural Information Processing Systems, volume 16. MIT Press, 2003. URL https://proceedings.neurips.cc/paper/2003/hash/9657c1fffd38824e5ab0472e022e577e-Abstract.html.
  13. Neil Lawrence. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. Journal of machine learning research, 6(11), 2005.
  14. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat], September 2020. URL http://arxiv.org/abs/1802.03426. arXiv: 1802.03426.
  15. Columbia object image library (coil-100). 1996.
  16. Kernel principal component analysis. In Wulfram Gerstner, Alain Germond, Martin Hasler, and Jean-Daniel Nicoud (eds.), Artificial Neural Networks — ICANN’97, Lecture Notes in Computer Science, pp.  583–588, Berlin, Heidelberg, 1997. Springer. ISBN 978-3-540-69620-9. doi: 10.1007/BFb0020217.
  17. Dimensionality reduction and noise removal in wireless sensor network datasets. In 2009 Second International Conference on Computer and Electrical Engineering, volume 2, pp.  674–677. IEEE, 2009.
  18. A global geometric framework for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.
  19. 3D People Tracking with Gaussian Process Dynamical Models. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 1, pp.  238–245, June 2006. doi: 10.1109/CVPR.2006.15. ISSN: 1063-6919.
  20. Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(11), 2008a.
  21. Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine learning research, 9(11), 2008b.
  22. Gaussian Process Dynamical Models. In Advances in Neural Information Processing Systems, volume 18. MIT Press, 2005. URL https://proceedings.neurips.cc/paper/2005/hash/ccd45007df44dd0f12098f486e7e8a0f-Abstract.html.
  23. Gaussian Process Dynamical Models for Human Motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):283–298, 2008. ISSN 1939-3539. doi: 10.1109/TPAMI.2007.1167. Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.
  24. Gaussian process based nonlinear latent structure discovery in multivariate spike train data. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/hash/b3b4d2dbedc99fe843fd3dedb02f086f-Abstract.html.
  25. Learning a latent manifold of odor representations from neural responses in piriform cortex. Advances in Neural Information Processing Systems, 31, 2018.
  26. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com