Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Decomposition of class II graphs into two class I graphs (2211.05930v1)

Published 11 Nov 2022 in math.CO and cs.DM

Abstract: Mkrtchyan and Steffen [J. Graph Theory, 70 (4), 473--482, 2012] showed that every class II simple graph can be decomposed into a maximum $\Delta$-edge-colorable subgraph and a matching. They further conjectured that every graph $G$ with chromatic index $\Delta(G)+k$ ($k\geq 1$) can be decomposed into a maximum $\Delta(G)$-edge-colorable subgraph (not necessarily class I) and a $k$-edge-colorable subgraph. In this paper, we first generalize their result to multigraphs and show that every multigraph $G$ with multiplicity $\mu$ can be decomposed into a maximum $\Delta(G)$-edge-colorable subgraph and a subgraph with maximum degree at most $\mu$. Then we prove that every graph $G$ with chromatic index $\Delta(G)+k$ can be decomposed into two class I subgraphs $H_1$ and $H_2$ such that $\Delta(H_1) = \Delta(G)$ and $\Delta(H_2) = k$, which is a variation of their conjecture.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.