Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Python library for nonlinear system identification using Multi-Gene Genetic Programming algorithm (2211.05723v1)

Published 10 Nov 2022 in eess.SY and cs.SY

Abstract: Models can be built directly from input and output data trough a process known as system identification. The Nonlinear AutoRegressive with eXogenous inputs (NARMAX) models are among the most used mathematical representations in the area and has many successful applications on data-driven modeling in different fields. Such models become extremely large when they have high degree of non-linearity and long-term dependencies. Hence, a structure selection process must be performed to make them parsimonious. In the present paper, it is introduced a toolbox in Python that performs the structure selection process using the evolutionary algorithm named Multi-Gene Genetic Programming (MGGP). The toolbox encapsulates basic tools for parameter estimation, simulation and validation, and it allows the users to customize their evaluation function including prior knowledge and constraints in the individual structure (gray-box identification).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.