Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Federated Learning against both Data Heterogeneity and Poisoning Attack via Aggregation Optimization (2211.05554v2)

Published 10 Nov 2022 in cs.LG, cs.CV, and cs.DC

Abstract: Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning (FL) systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To universally overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small amount of proxy data collected by the service provider itself via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data (e.g., around one hundred samples). With optimized aggregation, SmartFL ensures robustness against both heterogeneous and malicious clients, which is desirable in real-world FL where either or both problems may occur. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both FL with non-IID data distribution and FL with malicious clients. The source code will be released.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.