Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

3D-CSL: self-supervised 3D context similarity learning for Near-Duplicate Video Retrieval (2211.05352v1)

Published 10 Nov 2022 in cs.CV

Abstract: In this paper, we introduce 3D-CSL, a compact pipeline for Near-Duplicate Video Retrieval (NDVR), and explore a novel self-supervised learning strategy for video similarity learning. Most previous methods only extract video spatial features from frames separately and then design kinds of complex mechanisms to learn the temporal correlations among frame features. However, parts of spatiotemporal dependencies have already been lost. To address this, our 3D-CSL extracts global spatiotemporal dependencies in videos end-to-end with a 3D transformer and find a good balance between efficiency and effectiveness by matching on clip-level. Furthermore, we propose a two-stage self-supervised similarity learning strategy to optimize the entire network. Firstly, we propose PredMAE to pretrain the 3D transformer with video prediction task; Secondly, ShotMix, a novel video-specific augmentation, and FCS loss, a novel triplet loss, are proposed further promote the similarity learning results. The experiments on FIVR-200K and CC_WEB_VIDEO demonstrate the superiority and reliability of our method, which achieves the state-of-the-art performance on clip-level NDVR.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)