Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RARE: Renewable Energy Aware Resource Management in Datacenters (2211.05346v1)

Published 10 Nov 2022 in cs.DC and cs.AI

Abstract: The exponential growth in demand for digital services drives massive datacenter energy consumption and negative environmental impacts. Promoting sustainable solutions to pressing energy and digital infrastructure challenges is crucial. Several hyperscale cloud providers have announced plans to power their datacenters using renewable energy. However, integrating renewables to power the datacenters is challenging because the power generation is intermittent, necessitating approaches to tackle power supply variability. Hand engineering domain-specific heuristics-based schedulers to meet specific objective functions in such complex dynamic green datacenter environments is time-consuming, expensive, and requires extensive tuning by domain experts. The green datacenters need smart systems and system software to employ multiple renewable energy sources (wind and solar) by intelligently adapting computing to renewable energy generation. We present RARE (Renewable energy Aware REsource management), a Deep Reinforcement Learning (DRL) job scheduler that automatically learns effective job scheduling policies while continually adapting to datacenters' complex dynamic environment. The resulting DRL scheduler performs better than heuristic scheduling policies with different workloads and adapts to the intermittent power supply from renewables. We demonstrate DRL scheduler system design parameters that, when tuned correctly, produce better performance. Finally, we demonstrate that the DRL scheduler can learn from and improve upon existing heuristic policies using Offline Learning.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.