Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Prior-enhanced Temporal Action Localization using Subject-aware Spatial Attention (2211.05299v1)

Published 10 Nov 2022 in cs.CV

Abstract: Temporal action localization (TAL) aims to detect the boundary and identify the class of each action instance in a long untrimmed video. Current approaches treat video frames homogeneously, and tend to give background and key objects excessive attention. This limits their sensitivity to localize action boundaries. To this end, we propose a prior-enhanced temporal action localization method (PETAL), which only takes in RGB input and incorporates action subjects as priors. This proposal leverages action subjects' information with a plug-and-play subject-aware spatial attention module (SA-SAM) to generate an aggregated and subject-prioritized representation. Experimental results on THUMOS-14 and ActivityNet-1.3 datasets demonstrate that the proposed PETAL achieves competitive performance using only RGB features, e.g., boosting mAP by 2.41% or 0.25% over the state-of-the-art approach that uses RGB features or with additional optical flow features on the THUMOS-14 dataset.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube