Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Directed Isoperimetric Theorems for Boolean Functions on the Hypergrid and an $\widetilde{O}(n\sqrt{d})$ Monotonicity Tester (2211.05281v1)

Published 10 Nov 2022 in cs.DS and cs.DM

Abstract: The problem of testing monotonicity for Boolean functions on the hypergrid, $f:[n]d \to {0,1}$ is a classic topic in property testing. When $n=2$, the domain is the hypercube. For the hypercube case, a breakthrough result of Khot-Minzer-Safra (FOCS 2015) gave a non-adaptive, one-sided tester making $\widetilde{O}(\varepsilon{-2}\sqrt{d})$ queries. Up to polylog $d$ and $\varepsilon$ factors, this bound matches the $\widetilde{\Omega}(\sqrt{d})$-query non-adaptive lower bound (Chen-De-Servedio-Tan (STOC 2015), Chen-Waingarten-Xie (STOC 2017)). For any $n > 2$, the optimal non-adaptive complexity was unknown. A previous result of the authors achieves a $\widetilde{O}(d{5/6})$-query upper bound (SODA 2020), quite far from the $\sqrt{d}$ bound for the hypercube. In this paper, we resolve the non-adaptive complexity of monotonicity testing for all constant $n$, up to $\text{poly}(\varepsilon{-1}\log d)$ factors. Specifically, we give a non-adaptive, one-sided monotonicity tester making $\widetilde{O}(\varepsilon{-2}n\sqrt{d})$ queries. From a technical standpoint, we prove new directed isoperimetric theorems over the hypergrid $[n]d$. These results generalize the celebrated directed Talagrand inequalities that were only known for the hypercube.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.