Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

A theory of quantum differential equation solvers: limitations and fast-forwarding (2211.05246v2)

Published 9 Nov 2022 in quant-ph, cs.NA, and math.NA

Abstract: We study the limitations and fast-forwarding of quantum algorithms for linear ordinary differential equation (ODE) systems with a particular focus on non-quantum dynamics, where the coefficient matrix in the ODE is not anti-Hermitian or the ODE is inhomogeneous. On the one hand, for generic homogeneous linear ODEs, by proving worst-case lower bounds, we show that quantum algorithms suffer from computational overheads due to two types of non-quantumness'': real part gap and non-normality of the coefficient matrix. We then show that homogeneous ODEs in the absence of both types ofnon-quantumness'' are equivalent to quantum dynamics, and reach the conclusion that quantum algorithms for quantum dynamics work best. We generalize our results to the inhomogeneous case and find that existing generic quantum ODE solvers cannot be substantially improved. To obtain these lower bounds, we propose a general framework for proving lower bounds on quantum algorithms that are amplifiers, meaning that they amplify the difference between a pair of input quantum states. On the other hand, we show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency. More specifically, we obtain quadratic improvements in the evolution time $T$ for inhomogeneous ODEs with a negative semi-definite coefficient matrix, and exponential improvements in both $T$ and the spectral norm of the coefficient matrix for inhomogeneous ODEs with efficiently implementable eigensystems, including various spatially discretized linear evolutionary partial differential equations. We give fast-forwarding algorithms that are conceptually different from existing ones in the sense that they neither require time discretization nor solving high-dimensional linear systems.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube