Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Streaming algorithms for the missing item finding problem (2211.05170v1)

Published 9 Nov 2022 in cs.DS

Abstract: Many problems on data streams have been studied at two extremes of difficulty: either allowing randomized algorithms, in the static setting (where they should err with bounded probability on the worst case stream); or when only deterministic and infallible algorithms are required. Some recent works have considered the adversarial setting, in which a randomized streaming algorithm must succeed even on data streams provided by an adaptive adversary that can see the intermediate outputs of the algorithm. In order to better understand the differences between these models, we study a streaming task called "Missing Item Finding". In this problem, for $r < n$, one is given a data stream $a_1,\ldots,a_r$ of elements in $[n]$, (possibly with repetitions), and must output some $x \in [n]$ which does not equal any of the $a_i$. We prove that, for $r = n{\Theta(1)}$ and $\delta = 1/\mathrm{poly}(n)$, the space required for randomized algorithms that solve this problem in the static setting with error $\delta$ is $\Theta(\mathrm{polylog}(n))$; for algorithms in the adversarial setting with error $\delta$, $\Theta((1 + r2 / n) \mathrm{polylog}(n))$; and for deterministic algorithms, $\Theta(r / \mathrm{polylog}(n))$. Because our adversarially robust algorithm relies on free access to a string of $O(r \log n)$ random bits, we investigate a "random start" model of streaming algorithms where all random bits used are included in the space cost. Here we find a conditional lower bound on the space usage, which depends on the space that would be needed for a pseudo-deterministic algorithm to solve the problem. We also prove an $\Omega(r / \mathrm{polylog}(n))$ lower bound for the space needed by a streaming algorithm with $< 1/2{\mathrm{polylog}(n)}$ error against "white-box" adversaries that can see the internal state of the algorithm, but not predict its future random decisions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.