Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Best of Both Worlds: a Framework for Combining Degradation Prediction with High Performance Super-Resolution Networks (2211.05018v1)

Published 9 Nov 2022 in cs.CV, cs.AI, and cs.LG

Abstract: To date, the best-performing blind super-resolution (SR) techniques follow one of two paradigms: A) generate and train a standard SR network on synthetic low-resolution - high-resolution (LR - HR) pairs or B) attempt to predict the degradations an LR image has suffered and use these to inform a customised SR network. Despite significant progress, subscribers to the former miss out on useful degradation information that could be used to improve the SR process. On the other hand, followers of the latter rely on weaker SR networks, which are significantly outperformed by the latest architectural advancements. In this work, we present a framework for combining any blind SR prediction mechanism with any deep SR network, using a metadata insertion block to insert prediction vectors into SR network feature maps. Through comprehensive testing, we prove that state-of-the-art contrastive and iterative prediction schemes can be successfully combined with high-performance SR networks such as RCAN and HAN within our framework. We show that our hybrid models consistently achieve stronger SR performance than both their non-blind and blind counterparts. Furthermore, we demonstrate our framework's robustness by predicting degradations and super-resolving images from a complex pipeline of blurring, noise and compression.

Summary

We haven't generated a summary for this paper yet.