Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hyper-Parameter Auto-Tuning for Sparse Bayesian Learning (2211.04847v1)

Published 9 Nov 2022 in eess.SP and cs.LG

Abstract: Choosing the values of hyper-parameters in sparse Bayesian learning (SBL) can significantly impact performance. However, the hyper-parameters are normally tuned manually, which is often a difficult task. Most recently, effective automatic hyper-parameter tuning was achieved by using an empirical auto-tuner. In this work, we address the issue of hyper-parameter auto-tuning using neural network (NN)-based learning. Inspired by the empirical auto-tuner, we design and learn a NN-based auto-tuner, and show that considerable improvement in convergence rate and recovery performance can be achieved.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.