Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improve Model Testing by Integrating Bounded Model Checking and Coverage Guided Fuzzing (2211.04712v1)

Published 9 Nov 2022 in cs.SE

Abstract: The control logic models built by Simulink or Ptolemy have been widely used in industry scenes. It is an urgent need to ensure the safety and security of the control logic models. Test case generation technologies are widely used to ensure the safety and security. State-of-the-art model testing tools employ model checking techniques or search-based methods to generate test cases. Traditional search based techniques based on Simulink simulation are plagued by problems such as low speed and high overhead. Traditional model checking techniques such as symbolic execution have limited performance when dealing with nonlinear elements and complex loops. Recently, coverage guided fuzzing technologies are known to be effective for test case generation, due to their high efficiency and impressive effects over complex branches of loops. In this paper, we apply fuzzing methods to improve model testing and demonstrate the effectiveness. The fuzzing methods aim to cover more program branches by mutating valuable seeds. Inspired by this feature, we propose a novel integration technology SPsCGF, which leverages bounded model checking for symbolic execution to generate test cases as initial seeds and then conduct fuzzing based upon these worthy seeds. In this manner, our work combines the advantages of the model checking methods and fuzzing techniques in a novel way. Since the control logic models always receive signal inputs, we specifically design novel mutation operators for signals to improve the existing fuzzing method in model testing. Over the evaluated benchmarks which consist of industrial cases, SPsCGF could achieve 8% to 38% higher model coverage and 3x-10x time efficiency compared with the state-of-the-art works.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube