Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised Extractive Summarization with Heterogeneous Graph Embeddings for Chinese Document (2211.04698v1)

Published 9 Nov 2022 in cs.CL

Abstract: In the scenario of unsupervised extractive summarization, learning high-quality sentence representations is essential to select salient sentences from the input document. Previous studies focus more on employing statistical approaches or pre-trained LLMs (PLMs) to extract sentence embeddings, while ignoring the rich information inherent in the heterogeneous types of interaction between words and sentences. In this paper, we are the first to propose an unsupervised extractive summarizaiton method with heterogeneous graph embeddings (HGEs) for Chinese document. A heterogeneous text graph is constructed to capture different granularities of interactions by incorporating graph structural information. Moreover, our proposed graph is general and flexible where additional nodes such as keywords can be easily integrated. Experimental results demonstrate that our method consistently outperforms the strong baseline in three summarization datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.