Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Walsh-Hadamard Transform and Matrix Multiplication over Finite Fields using Lookup Tables (2211.04643v1)

Published 9 Nov 2022 in cs.DS

Abstract: We use lookup tables to design faster algorithms for important algebraic problems over finite fields. These faster algorithms, which only use arithmetic operations and lookup table operations, may help to explain the difficulty of determining the complexities of these important problems. Our results over a constant-sized finite field are as follows. The Walsh-Hadamard transform of a vector of length $N$ can be computed using $O(N \log N / \log \log N)$ bit operations. This generalizes to any transform defined as a Kronecker power of a fixed matrix. By comparison, the Fast Walsh-Hadamard transform (similar to the Fast Fourier transform) uses $O(N \log N)$ arithmetic operations, which is believed to be optimal up to constant factors. Any algebraic algorithm for multiplying two $N \times N$ matrices using $O(N\omega)$ operations can be converted into an algorithm using $O(N\omega / (\log N){\omega/2 - 1})$ bit operations. For example, Strassen's algorithm can be converted into an algorithm using $O(N{2.81} / (\log N){0.4})$ bit operations. It remains an open problem with practical implications to determine the smallest constant $c$ such that Strassen's algorithm can be implemented to use $c \cdot N{2.81} + o(N{2.81})$ arithmetic operations; using a lookup table allows one to save a super-constant factor in bit operations.

Summary

We haven't generated a summary for this paper yet.