Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Optimal Graph Filters for Clustering of Attributed Graphs (2211.04634v2)

Published 9 Nov 2022 in cs.LG, cs.SI, and eess.SP

Abstract: Many real-world systems can be represented as graphs where the different entities in the system are presented by nodes and their interactions by edges. An important task in studying large datasets with graphical structure is graph clustering. While there has been a lot of work on graph clustering using the connectivity between the nodes, many real-world networks also have node attributes. Clustering attributed graphs requires joint modeling of graph structure and node attributes. Recent work has focused on combining these two complementary sources of information through graph convolutional networks and graph filtering. However, these methods are mostly limited to lowpass filtering and do not explicitly learn the filter parameters for the clustering task. In this paper, we introduce a graph signal processing based approach, where we learn the parameters of Finite Impulse Response (FIR) and Autoregressive Moving Average (ARMA) graph filters optimized for clustering. The proposed approach is formulated as a two-step iterative optimization problem, focusing on learning interpretable graph filters that are optimal for the given data and that maximize the separation between different clusters. The proposed approach is evaluated on attributed networks and compared to the state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube