Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A review of TinyML (2211.04448v1)

Published 5 Nov 2022 in cs.LG and cs.AI

Abstract: In this current technological world, the application of machine learning is becoming ubiquitous. Incorporating machine learning algorithms on extremely low-power and inexpensive embedded devices at the edge level is now possible due to the combination of the Internet of Things (IoT) and edge computing. To estimate an outcome, traditional machine learning demands vast amounts of resources. The TinyML concept for embedded machine learning attempts to push such diversity from usual high-end approaches to low-end applications. TinyML is a rapidly expanding interdisciplinary topic at the convergence of machine learning, software, and hardware centered on deploying deep neural network models on embedded (micro-controller-driven) systems. TinyML will pave the way for novel edge-level services and applications that survive on distributed edge inferring and independent decision-making rather than server computation. In this paper, we explore TinyML's methodology, how TinyML can benefit a few specific industrial fields, its obstacles, and its future scope.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.