Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Individualized and Global Feature Attributions for Gradient Boosted Trees in the Presence of $\ell_2$ Regularization (2211.04409v1)

Published 8 Nov 2022 in stat.ML and cs.LG

Abstract: While $\ell_2$ regularization is widely used in training gradient boosted trees, popular individualized feature attribution methods for trees such as Saabas and TreeSHAP overlook the training procedure. We propose Prediction Decomposition Attribution (PreDecomp), a novel individualized feature attribution for gradient boosted trees when they are trained with $\ell_2$ regularization. Theoretical analysis shows that the inner product between PreDecomp and labels on in-sample data is essentially the total gain of a tree, and that it can faithfully recover additive models in the population case when features are independent. Inspired by the connection between PreDecomp and total gain, we also propose TreeInner, a family of debiased global feature attributions defined in terms of the inner product between any individualized feature attribution and labels on out-sample data for each tree. Numerical experiments on a simulated dataset and a genomic ChIP dataset show that TreeInner has state-of-the-art feature selection performance. Code reproducing experiments is available at https://github.com/nalzok/TreeInner .

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.