Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Packing: Lower Bounds via Error Exponents (2211.04408v2)

Published 8 Nov 2022 in math.MG, cs.IT, and math.IT

Abstract: We derive lower bounds on the maximal rates for multiple packings in high-dimensional Euclidean spaces. Multiple packing is a natural generalization of the sphere packing problem. For any $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $, a multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}n $ such that any point in $ \mathbb{R}n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. We study this problem for both bounded point sets whose points have norm at most $\sqrt{nP}$ for some constant $P>0$ and unbounded point sets whose points are allowed to be anywhere in $ \mathbb{R}n $. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. We derive the best known lower bounds on the optimal multiple packing density. This is accomplished by establishing a curious inequality which relates the list-decoding error exponent for additive white Gaussian noise channels, a quantity of average-case nature, to the list-decoding radius, a quantity of worst-case nature. We also derive various bounds on the list-decoding error exponent in both bounded and unbounded settings which are of independent interest beyond multiple packing.

Citations (2)

Summary

We haven't generated a summary for this paper yet.