Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HDRfeat: A Feature-Rich Network for High Dynamic Range Image Reconstruction (2211.04238v1)

Published 8 Nov 2022 in eess.IV

Abstract: A major challenge for high dynamic range (HDR) image reconstruction from multi-exposed low dynamic range (LDR) images, especially with dynamic scenes, is the extraction and merging of relevant contextual features in order to suppress any ghosting and blurring artifacts from moving objects. To tackle this, in this work we propose a novel network for HDR reconstruction with deep and rich feature extraction layers, including residual attention blocks with sequential channel and spatial attention. For the compression of the rich-features to the HDR domain, a residual feature distillation block (RFDB) based architecture is adopted. In contrast to earlier deep-learning methods for HDR, the above contributions shift focus from merging/compression to feature extraction, the added value of which we demonstrate with ablation experiments. We present qualitative and quantitative comparisons on a public benchmark dataset, showing that our proposed method outperforms the state-of-the-art.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.