Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

RRSR:Reciprocal Reference-based Image Super-Resolution with Progressive Feature Alignment and Selection (2211.04203v1)

Published 8 Nov 2022 in cs.CV

Abstract: Reference-based image super-resolution (RefSR) is a promising SR branch and has shown great potential in overcoming the limitations of single image super-resolution. While previous state-of-the-art RefSR methods mainly focus on improving the efficacy and robustness of reference feature transfer, it is generally overlooked that a well reconstructed SR image should enable better SR reconstruction for its similar LR images when it is referred to as. Therefore, in this work, we propose a reciprocal learning framework that can appropriately leverage such a fact to reinforce the learning of a RefSR network. Besides, we deliberately design a progressive feature alignment and selection module for further improving the RefSR task. The newly proposed module aligns reference-input images at multi-scale feature spaces and performs reference-aware feature selection in a progressive manner, thus more precise reference features can be transferred into the input features and the network capability is enhanced. Our reciprocal learning paradigm is model-agnostic and it can be applied to arbitrary RefSR models. We empirically show that multiple recent state-of-the-art RefSR models can be consistently improved with our reciprocal learning paradigm. Furthermore, our proposed model together with the reciprocal learning strategy sets new state-of-the-art performances on multiple benchmarks.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.